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Introduction to
Reinforcement Learning




What is reinforcement learning? EPFL

= Sutton and Barto, 1998: “Reinforcement learning is learning what to do - how to map situations to
actions - so as to maximize a numerical reward signal’.

» ChatGPT, 2022: “Reinforcement learning is a type of machine learning in which an agent learns to
Interact with its environment in order to maximize a reward signal”.

Agent Environment

- State s,
- Take action a,

—

- Next state s, 4

- Get reward r(s,, a,)




Recent advances

Atari

Deep Q-learning for
Atari games [1].

2016

Energy saving

DeepMind Al
reduces
Google data
centre cooling
bill by 40% [3].

2017

. AlphaGo/
. AlphaZero

- Al achieving grand
. master level in

. chess, go, and

. shogi [4,5]

O

2018
OpenAl Five

Training five
artificial
intelligence
agents to play
the Dota 2 [6].

O

Alpha Star

Al achieving grand
master level in
StarCraft Il game [7].

Rubik’s Cube
Solving Rubik's Cube

=Pr-L

2022
AlphaTensor

Discovering faster
matrix multiplication
algorithms [9].

with a human-like robot ChatGPT

hand [8].

A language model
trained to generate
human-like responses
to text input [10].



Example: Multi-agent game EPFL

////// / // \

2019: Learning to play hide and seek via
multi-agent reinforcement learning [2].



https://www.youtube.com/watch?v=kopoLzvh5jY

(Potential) real world applications

Nuclear power

plant

= Robotics

Thermal power
plant

Hydroelectric e
power plant

= Autonomous driving

Action a,

= Control of power grids

Nuclear power >
=S plant

Wind energy plant

Thermal power plant

Energy storage
systems
Distributed generation

N

Smart houses

Electric vehicles

R

Control of power grids [12].



Markov Decision processes EPFL

A Markov decision process is given by atuple #Z = (&, &, P, p) where...
« & is the set of all possible states.

« & is the set of all possible actions.

« P is the transition law with P(s’|s,a) = Pr(s,., = s'|s, = s,a, = a).

« p is the initial state distribution with p(s) = Pr(s, = s).

Markov property

Pr(s, . 1185815380y Ay_15--..,00) = Pr(s,.|s,a,) — stochastic dynamical system!



Example: Stochastic MDP (Gridworld)

Time evolution

« Startin sy, ~ p.
= Ateachtime 7.
. Take actiona, € .
. Endupinstates,, ~ P(-|s, a,).

ic Grid World

Stochastic Grid World
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Objective

Reward and discount factor

=« Reward functionr : & X &/ — R.
= Discountratey € (0,1).

Obijective function

The goal is to find a policy 7 : & — A, maximizing

J(7) :

©9)

=Y (s 5o~ poay ~ m(- 15,50y ~ P+ |5pa)
=0
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Reinforcement learning vs. optimal control EPFL

Stochastic optimal control

o0
max & Z y'r(s,a)|sy~ p,a,~a(-|s),8.,. ~P(|s,a,)
v/
=0

For known transition dynamics P, we can solve this via dynamic programming.

Reinforcement learning

« In RL we can only sample from the MDP, but do not assume to know P.
= We need to explore the environment.



Many different approaches

(

N

/
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4{ AlphaZero J

( )
RL Algorithms
& \Iy J
( ) (i 1 D)
Model-Free RL Model-Based RL
J 4 o k J
I ( By ) f ( 2 & )
Policy Optimization Q-Learning Learn the Model Given the Model
& 4 & -4 &
Policy Gradient - \ > DQN —>» World Models
- R DDPG < 5 g -
AT r \ > E51 L I2A
5 B TD3 < : :
PPO < - ) » QR-DQN > MBMF
J —) SAC ( . J \_ J
TRPO S > HER | e MBVE
J . \ J

Taxonomy of reinforcement learning approaches [14].



Policy gradient method EPFL

o0

max J(y) = E D Y'r(saa) sy~ poag~ m - |s)
=0

» Policy Optimization: Parameterize the policy as 7,(a | s) and then find the best policy.

= Direct parameterization

where 6 € RI¢XI<1, 0, , = 0and Z 0,.,=1
acs

ﬂ@(d ‘ S) — HS

A’



Policy Parameterization CPFL

= Softmax parameterization

exp (Hs,a)

“where 6 € RISXI<
Za@y CXP (gs,a’)

my(a | 5) =

= Neural softmax parameterization

exp (fy (s, a))
Za’ed CXPp (fé’ (Sa Cl/))

m(als) = , where f, (s, a) represents a neural network.



Policy gradient method EPFL

m@ax J(my) == Z y'r(s,a)| sy~ p,a, ~ my - |s,)
=0

» Parameterize the policy as my(a | 5).
= Using gradient ascent method to find best policy 7*
= Pseudo-code for policy gradient method

K < number of training iterations, € initialized randomly, o < step size
for 2 =1,2,..., K do

Calculate the gradient VyJ ()

0+ 60+ aVQJ(ﬂ'g)

end for



Results for policy gradient method EPFL

= Can we converge to the optimal policy when K is big enough?
= Non-convexity may lead to sub-optimal policy (local minima)

= There are convergence guarantees for direct parametrization or softmax parametrization [15, 16]
= Good

K < number of training iterations, € initialized randomly, o < step size
for 2 =1,2,..., K do

Calculate the gradient VyJ ()

0+ 60+ aVQJ(ﬂ'g)

end for



How to compute the gradient V,J(7,)? =EPFL

J(my) ;= lz y'r(s,a)| sy~ p,a, ~ my - \St)]
=0
J(my) =~ Jy(my) l
H
Jy(my) == lz y'r(s,a)| sy~ p,a, ~ 7wy - ‘St)]
t=0



Computation of the gradient V ,J(7,)

=Pr-L

For every random trajectory 75 = (SO, Aoy S1s A1y o5 Spp Appy Sy +1) , the probability of choosing this

trajectory as

o () = (50) [ T (@l 1) P (5001150

=0

And we set reward we get from this trajectory 7 as

H
R (7y) = Z y'r(s, a,)
=0

Then,
H

Jy(my) (= [ Z y'r(s,a)|sy=s,n
=0

Therefore,

VoJy(my) = Vy

_THNPQ[R (TH)]

~Ty~Po [R(TH )]



POlicy gradient theorem cprEl

Policy gradient theorem:

H H
Vodulmg) =E, l( Z y'r(s;, at)) X ( Z Vlog my(a,| Sz))]
=0

=0

Proof: Because
Volu(mg) = V., [R(7p)]

H
= Vy ) R(@)py(2)
Po(T) = P(SO)H”Q(at | s)P(S,11 |5 ay) k 9
=0 = ) R(@)Vyp7)
H T
= ) R@p,(1) Vglog(py(c))
R(7) = Z r(s, a,)y’ f
= E,.,, [R@) Vlog(p(0))]
=0 : .
=E,.,, |R(®@) VglOg(p(So)Hﬂe(az | SOP(S1p1 |55 @)
V, f(x) : —
. X H H
V XIOg(f (X)) — f(X) =E,., |R(® V9< Z log(zy(a,|s,)) + log(p(sy)) + Z log(P(s,. |5, at))>
i t=0 =0 i
- ) i
V_f(x) =f(x) V., log(f(x)) = E,.,, |[R@® x Y Vylog(mya,|s))
_ =0 _




How to estimate the gradient? EPFL

H H
Voly(mg) = E, ., l( Z y'r(s, at)) X ( Z Vlog my(a, | SQ)]
=0

=0

= Using Monte-Carlo method
. Consider a random variable X ~ q.
. Given independent and identically distributed X, ..., Xy ~ ¢, we can estimate

1 N
“Lf00] ~ — 2} fX).

« We don’t know P, but we can approximate V ,J(1,) using the Monte-Carlo method.



Monte Carlo method for gradient estimation EPFL

= We sample N trajectories by interacting with the environment
A R S i i _
(So,ao,sl,al,...,sH,aH), i =1{1,...,N}

=« Using the above samples, we estimate V ,J(7,) as

|
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Pros and cons of reinforcement learning EPFL

Pros Cons
= (General methods for complex tasks = Sample inefficiency for model free approach
= Adapt to changing environments » |Lack of safety and convergence guarantees

= Model free: no need to know dynamic model = Hard to assign meaningful rewards



Reinforcement learning projects in Sycamore lab  EPFL

Bachelor projects
= Policy optimization for robotics

Semester and master projects
» Safe reinforcement learning
= Inverse reinforcement learning
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