I
1

Introduction to
Reinforcement Learning

What is reinforcement learning? EPFL

= Sutton and Barto, 1998: “Reinforcement learning is learning what to do - how to map situations to
actions - so as to maximize a numerical reward signal’.

» ChatGPT, 2022: “Reinforcement learning is a type of machine learning in which an agent learns to
Interact with its environment in order to maximize a reward signal”.

Agent Environment

- State s,
- Take action a,

—

- Next state s, 4

- Get reward r(s,, a,)

Recent advances

Atari

Deep Q-learning for
Atari games [1].

2016

Energy saving

DeepMind Al
reduces
Google data
centre cooling
bill by 40% [3].

2017

. AlphaGo/
. AlphaZero

- Al achieving grand
. master level in

. chess, go, and

. shogi [4,5]

O

2018
OpenAl Five

Training five
artificial
intelligence
agents to play
the Dota 2 [6].

O

Alpha Star

Al achieving grand
master level in
StarCraft Il game [7].

Rubik’s Cube
Solving Rubik's Cube

=Pr-L

2022
AlphaTensor

Discovering faster
matrix multiplication
algorithms [9].

with a human-like robot ChatGPT

hand [8].

A language model
trained to generate
human-like responses
to text input [10].

Example: Multi-agent game EPFL

////// / // \

2019: Learning to play hide and seek via
multi-agent reinforcement learning [2].

https://www.youtube.com/watch?v=kopoLzvh5jY

(Potential) real world applications

Nuclear power

plant

= Robotics

Thermal power
plant

Hydroelectric e
power plant

= Autonomous driving

Action a,

= Control of power grids

Nuclear power >
=S plant

Wind energy plant

Thermal power plant

Energy storage
systems
Distributed generation

N

Smart houses

Electric vehicles

R

Control of power grids [12].

Markov Decision processes EPFL

A Markov decision process is given by atuple #Z = (&, &, P, p) where...
« & is the set of all possible states.

« & is the set of all possible actions.

« P is the transition law with P(s’|s,a) = Pr(s,., = s'|s, = s,a, = a).

« p is the initial state distribution with p(s) = Pr(s, = s).

Markov property

Pr(s, . 1185815380y Ay_15--..,00) = Pr(s,.|s,a,) — stochastic dynamical system!

Example: Stochastic MDP (Gridworld)

Time evolution

« Startin sy, ~ p.
= Ateachtime 7.
. Take actiona, € .
. Endupinstates,, ~ P(-|s, a,).

ic Grid World

Stochastic Grid World

=Pr-L

Objective

Reward and discount factor

=« Reward functionr : & X &/ — R.
= Discountratey € (0,1).

Obijective function

The goal is to find a policy 7 : & — A, maximizing

J(7) :

©9)

=Y (s 5o~ poay ~ m(- 15,50y ~ P+ |5pa)
=0

=Pr-L

Reinforcement learning vs. optimal control EPFL

Stochastic optimal control

o0
max & Z y'r(s,a)|sy~ p,a,~a(-|s),8.,. ~P(|s,a,)
v/
=0

For known transition dynamics P, we can solve this via dynamic programming.

Reinforcement learning

« In RL we can only sample from the MDP, but do not assume to know P.
= We need to explore the environment.

Many different approaches

(

N

/

=Pr-L

4{ AlphaZero J

()
RL Algorithms
& \Iy J
() (i 1 D)
Model-Free RL Model-Based RL
J 4 o k J
I (By) f (2 &)
Policy Optimization Q-Learning Learn the Model Given the Model
& 4 & -4 &
Policy Gradient - \ > DQN —>» World Models
- R DDPG < 5 g -
AT r \ > E51 L I2A
5 B TD3 < : :
PPO < -) » QR-DQN > MBMF
J —) SAC (. J _ J
TRPO S > HER | e MBVE
J . \ J

Taxonomy of reinforcement learning approaches [14].

Policy gradient method EPFL

o0

max J(y) = E D Y'r(saa) sy~ poag~ m - |s)
=0

» Policy Optimization: Parameterize the policy as 7,(a | s) and then find the best policy.

= Direct parameterization

where 6 € RI¢XI<1, 0, , = 0and Z 0,.,=1
acs

ﬂ@(d ‘ S) — HS

A’

Policy Parameterization CPFL

= Softmax parameterization

exp (Hs,a)

“where 6 € RISXI<
Za@y CXP (gs,a’)

my(a | 5) =

= Neural softmax parameterization

exp (fy (s, a))
Za’ed CXPp (fé’ (Sa Cl/))

m(als) = , where f, (s, a) represents a neural network.

Policy gradient method EPFL

m@ax J(my) == Z y'r(s,a)| sy~ p,a, ~ my - |s,)
=0

» Parameterize the policy as my(a | 5).
= Using gradient ascent method to find best policy 7*
= Pseudo-code for policy gradient method

K < number of training iterations, € initialized randomly, o < step size
for 2 =1,2,..., K do

Calculate the gradient VyJ ()

0+ 60+ aVQJ(ﬂ'g)

end for

Results for policy gradient method EPFL

= Can we converge to the optimal policy when K is big enough?
= Non-convexity may lead to sub-optimal policy (local minima)

= There are convergence guarantees for direct parametrization or softmax parametrization [15, 16]
= Good

K < number of training iterations, € initialized randomly, o < step size
for 2 =1,2,..., K do

Calculate the gradient VyJ ()

0+ 60+ aVQJ(ﬂ'g)

end for

How to compute the gradient V,J(7,)? =EPFL

J(my) ;= lz y'r(s,a)| sy~ p,a, ~ my - \St)]
=0
J(my) =~ Jy(my) l
H
Jy(my) == lz y'r(s,a)| sy~ p,a, ~ 7wy - ‘St)]
t=0

Computation of the gradient V ,J(7,)

=Pr-L

For every random trajectory 75 = (SO, Aoy S1s A1y o5 Spp Appy Sy +1) , the probability of choosing this

trajectory as

o () = (50) [T (@l 1) P (5001150

=0

And we set reward we get from this trajectory 7 as

H
R (7y) = Z y'r(s, a,)
=0

Then,
H

Jy(my) (= [Z y'r(s,a)|sy=s,n
=0

Therefore,

VoJy(my) = Vy

_THNPQ[R (TH)]

~Ty~Po [R(TH)]

POlicy gradient theorem cprEl

Policy gradient theorem:

H H
Vodulmg) =E, l(Z y'r(s;, at)) X (Z Vlog my(a,| Sz))]
=0

=0

Proof: Because
Volu(mg) = V., [R(7p)]

H
= Vy) R(@)py(2)
Po(T) = P(SO)H”Q(at | s)P(S,11 |5 ay) k 9
=0 =) R(@)Vyp7)
H T
=) R@p,(1) Vglog(py(c))
R(7) = Z r(s, a,)y’ f
= E,.,, [R@) Vlog(p(0))]
=0 : .
=E,.,, |R(®@) VglOg(p(So)Hﬂe(az | SOP(S1p1 |55 @)
V, f(x) : —
. X H H
V XIOg(f (X)) — f(X) =E,., |R(® V9< Z log(zy(a,|s,)) + log(p(sy)) + Z log(P(s,. |5, at))>
i t=0 =0 i
-) i
V_f(x) =f(x) V., log(f(x)) = E,.,, |[R@® x Y Vylog(mya,|s))
_ =0 _

How to estimate the gradient? EPFL

H H
Voly(mg) = E, ., l(Z y'r(s, at)) X (Z Vlog my(a, | SQ)]
=0

=0

= Using Monte-Carlo method
. Consider a random variable X ~ q.
. Given independent and identically distributed X, ..., Xy ~ ¢, we can estimate

1 N
“Lf00] ~ — 2} fX).

« We don’t know P, but we can approximate V ,J(1,) using the Monte-Carlo method.

Monte Carlo method for gradient estimation EPFL

= We sample N trajectories by interacting with the environment
A R S i i _
(So,ao,sl,al,...,sH,aH), i =1{1,...,N}

=« Using the above samples, we estimate V ,J(7,) as

|
|
5
S
1
7 N\
I M=
?N
)
-
N
N
N
X
7~ N\
I M=
<
Cbh_‘
o
oQ
S
D
N
c
N
N
—

Pros and cons of reinforcement learning EPFL

Pros Cons
= (General methods for complex tasks = Sample inefficiency for model free approach
= Adapt to changing environments » |Lack of safety and convergence guarantees

= Model free: no need to know dynamic model = Hard to assign meaningful rewards

Reinforcement learning projects in Sycamore lab EPFL

Bachelor projects
= Policy optimization for robotics

Semester and master projects
» Safe reinforcement learning
= Inverse reinforcement learning

References =PFL

= [1] Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).

= [2] Baker, Bowen, et al. "Emergent tool use from multi-agent autocurricula." arXiv preprint arXiv:1909.07528 (2019).

= [3] DeepMind Al Reduces Google Data Centre Cooling Bill by 40%. https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-
bill-by-40. Accessed 15 Dec. 2022.

= [4] Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489

= [5] Silver, David, et al. "Mastering chess and shogi by self-play with a general reinforcement learning algorithm." arXiv preprint arXiv:1712.01815 (2017).

= [6] Berner, Christopher, et al. "Dota 2 with large scale deep reinforcement learning." arXiv preprint arXiv:1912.06680 (2019).

= [7] Arulkumaran, Kai, Antoine Cully, and Julian Togelius. "Alphastar: An evolutionary computation perspective." Proceedings of the genetic and
evolutionary computation conference companion. 2019.

= [8] Akkaya, lige, et al. "Solving rubik's cube with a robot hand." arXiv preprint arXiv:1910.07113 (2019).

= [9] Fawzi, Alhussein, et al. "Discovering faster matrix multiplication algorithms with reinforcement learning." Nature 610.7930 (2022): 47-53.

= [10] “ChatGPT: Optimizing Language Models for Dialogue.” OpenAl, 30 Nov. 2022, https://openai.com/blog/chatgpt/.

= [11] Miki, Takahiro, et al. "Learning robust perceptive locomotion for quadrupedal robots in the wild." Science Robotics 7.62 (2022): eabk2822.

= [12] Ibrahim, Muhammad Sohail, Wei Dong, and Qiang Yang. "Machine learning driven smart electric power systems: Current trends and new
perspectives." Applied Energy 272 (2020): 115237

= [13] Niao He, Lecture notes on “Introduction to Reinforcement Learning”, ETH Zurich, 2021, https://odi.inf.ethz.ch/files/zinal/Lecture-1-RL-
introduction.pdf

» [14] Open Al, “Taxonomy of RL Algorithms”, https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below

= [15] Agarwal, Alekh, et al. "Optimality and approximation with policy gradient methods in markov decision processes." Conference on Learning Theory.
PMLR, 2020.

= [16] Mei, Jincheng, et al. "On the global convergence rates of softmax policy gradient methods." International Conference on Machine Learning. PMLR,
2020.

https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40
https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40
https://openai.com/blog/chatgpt/
https://odi.inf.ethz.ch/files/zinal/Lecture-1-RL-introduction.pdf
https://odi.inf.ethz.ch/files/zinal/Lecture-1-RL-introduction.pdf
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below

