
Introduction to
Reinforcement Learning

What is reinforcement learning?

▪ Sutton and Barto, 1998: “Reinforcement learning is learning what to do - how to map situations to
actions - so as to maximize a numerical reward signal”.

▪ ChatGPT, 2022: “Reinforcement learning is a type of machine learning in which an agent learns to
interact with its environment in order to maximize a reward signal”.

- State

- Take action

st
at

Agent

- Next state

- Get reward

st+1
r(st, at)

Environment

Recent advances

2018
OpenAI Five
Training five
artificial
intelligence
agents to play
the Dota 2 [6].

2017
AlphaGo/  
AlphaZero

AI achieving grand
master level in
chess, go, and
shogi [4,5].

ChatGPT
A language model
trained to generate
human-like responses
to text input [10].

2022
AlphaTensor
Discovering faster
matrix multiplication
algorithms [9].

2016
Energy saving

DeepMind AI
reduces
Google data
centre cooling
bill by 40% [3].

2013
Atari
Deep Q-learning for
Atari games [1].

Rubik’s Cube

2019
Alpha Star
AI achieving grand
master level in
StarCraft II game [7].

Solving Rubik's Cube
with a human-like robot
hand [8].

Example: Multi-agent game

2019: Learning to play hide and seek via  
multi-agent reinforcement learning [2].

2019: Learning to play hide and seek via  
multi-agent reinforcement learning [2].

https://www.youtube.com/watch?v=kopoLzvh5jY

(Potential) real world applications

▪ Robotics

▪ Autonomous driving

▪ Control of power grids

Teaching a robot how to walk in the wild [11].

Control of power grids [12].

Action at

Next state  
and reward

st+1
r(st, at)

Markov Decision processes

A Markov decision process is given by a tuple where…
▪ is the set of all possible states.
▪ is the set of all possible actions.
▪ is the transition law with .
▪ is the initial state distribution with .

Markov property
 stochastic dynamical system!

ℳ = (𝒮, 𝒜, P, ρ)
𝒮
𝒜
P P(s′￼|s, a) = Pr(st+1 = s′￼|st = s, at = a)
ρ ρ(s) = Pr(s0 = s)

Pr(st+1 |st, st−1, . . . , s0, at, at−1, , a0) = Pr(st+1 |st, at) →

Example: Stochastic MDP (Gridworld)

Time evolution
▪ Start in .
▪ At each time :

• Take action .
• End up in state .

s0 ∼ ρ
t

at ∈ 𝒜
st+1 ∼ P(⋅ |st, at)

Objective

Reward and discount factor

▪ Reward function .
▪ Discount rate .

Objective function
The goal is to find a policy maximizing

r : 𝒮 × 𝒜 → ℝ
γ ∈ (0,1)

π : 𝒮 → Δ𝒜

J(π) := 𝔼 [
∞

∑
t=0

γtr(st, at) |s0 ∼ ρ, at ∼ π(⋅ |st), st+1 ∼ P(⋅ |st, at)]

Reinforcement learning vs. optimal control

Stochastic optimal control

Reinforcement learning
▪ In RL we can only sample from the MDP, but do not assume to know .
▪ We need to explore the environment.

max
π

𝔼 [
∞

∑
t=0

γtr(st, at) |s0 ∼ ρ, at ∼ π(⋅ |st), st+1 ∼ P(⋅ |st, at)]

P

For known transition dynamics , we can solve this via dynamic programming. P

Many different approaches

Taxonomy of reinforcement learning approaches [14].

Policy gradient method

▪ Policy Optimization: Parameterize the policy as and then find the best policy.

max
θ

J(πθ) := 𝔼 [
∞

∑
t=0

γtr(st, at) |s0 ∼ ρ, at ∼ πθ(⋅ |st)]
πθ(a |s)

▪ Direct parameterization 
πθ(a |s) = θs,a, where θ ∈ ℝ|𝒮|×|𝒜|, θs,a ≥ 0 and ∑

a∈𝒜

θs,a = 1.

Policy Parameterization

▪ Softmax parameterization 

▪ Neural softmax parameterization 

πθ(a |s) =
exp (θs,a)

∑a′￼∈𝒜 exp (θs,a′￼)
, where θ ∈ ℝ|𝒮|×|𝒜|

πθ(a |s) =
exp (fθ (s, a))

∑a′￼∈𝒜 exp (fθ (s, a′￼))
, where fθ (s, a) represents a neural network.

Policy gradient method

▪ Parameterize the policy as .
▪ Using gradient ascent method to find best policy
▪ Pseudo-code for policy gradient method

max
θ

J(πθ) := 𝔼 [
∞

∑
t=0

γtr(st, at) |s0 ∼ ρ, at ∼ πθ(⋅ |st)]
πθ(a |s)

π*

Results for policy gradient method

▪ Can we converge to the optimal policy when K is big enough?
▪ Non-convexity may lead to sub-optimal policy (local minima)

▪ There are convergence guarantees for direct parametrization or softmax parametrization [15, 16]
▪ Good

How to compute the gradient ?∇θJ(πθ)

J(πθ) := 𝔼 [
∞

∑
t=0

γtr(st, at) |s0 ∼ ρ, at ∼ πθ(⋅ |st)]

JH(πθ) := 𝔼 [
H

∑
t=0

γtr(st, at) |s0 ∼ ρ, at ∼ πθ(⋅ |st)]

J(πθ) ≈ JH(πθ)

Computation of the gradient ∇θJH(πθ)
▪ For every random trajectory , the probability of choosing this

trajectory as 

▪ And we set reward we get from this trajectory as  

▪ Then, 

▪ Therefore, 

τH = (s0, a0, s1, a1, …, sH, aH, sH+1)

pθ (τH) := ρ (s0)
H

∏
t=0

πθ (at |st) P (st+1 |st, at)
τ

R (τH) :=
H

∑
t=0

γtr(st, at)

JH(πθ) := 𝔼 [
H

∑
t=0

γtr(st, at) |s0 = s, π] = 𝔼τH∼pθ [R(τH)]

∇θJH(πθ) = ∇θ𝔼τH∼pθ
[R(τH)]

Policy gradient theorem
Policy gradient theorem:

Proof: Because

∇θJH(πθ) = 𝔼τH∼pθ [(
H

∑
t=0

γtr(st, at)) × (
H

∑
t=0

∇θlog πθ(at |st))]

pθ(τ) = ρ(s0)
H

∏
t=0

πθ(at |st)P(st+1 |st, at)

R(τ) =
H

∑
t=0

r(st, at)γt

∇xlog(f(x)) =
∇x f(x)

f(x)
∇x f(x) = f(x)∇xlog(f(x))

∇θ JH(πθ) = ∇θ𝔼τ∼pθ
[R(τH)]

= ∇θ ∑
τ

R(τ)pθ(τ)

= ∑
τ

R(τ)∇θ pθ(τ)

= ∑
τ

R(τ)pθ(τ)∇θ log(pθ(τ))

= 𝔼τ∼pθ [R(τ)∇θ log(pθ(τ))]

= 𝔼τ∼pθ [R(τ)∇θ log(ρ(s0)
H

∏
t=0

πθ(at |st)P(st+1 |st, at))]
= 𝔼τ∼pθ

R(τ)∇θ(
H

∑
t=0

log(πθ(at |st)) + log(ρ(s0)) +
H

∑
t=0

log(P(st+1 |st, at)))
= 𝔼τ∼pθ [R(τ) ×

H

∑
t=0

∇θ log(πθ(at |st))]

How to estimate the gradient?

▪ Using Monte-Carlo method
• Consider a random variable .
• Given independent and identically distributed , we can estimate

▪ We don’t know , but we can approximate using the Monte-Carlo method.

∇θJH(πθ) = 𝔼τH∼pθ [(
H

∑
t=0

γtr(st, at)) × (
H

∑
t=0

∇θlog πθ(at |st))]

X ∼ q
X1, . . . , XN ∼ q

𝔼[f(X)] ≈
1
N

N

∑
i=1

f(Xi) .

P ∇θJH(πθ)

Monte Carlo method for gradient estimation
▪ We sample N trajectories by interacting with the environment

▪ Using the above samples, we estimate as
(si

0, ai
0, si

1, ai
1, …, si

H, ai
H), i = {1,…, N}

∇θJ(πθ)

∇θJ(πθ) ≈ ∇θJH(πθ)

= 𝔼τH∼pθ [(
H

∑
t=0

γtr(st, at)) × (
H

∑
t=0

∇θlog πθ(at |st))]
≈

1
N

N

∑
i=1 (

H

∑
t=0

γtr(si
t , ai

t)) (
H

∑
t=0

∇θlog πθ(ai
t |si

t))

Pros and cons of reinforcement learning

Cons
▪ Sample inefficiency for model free approach
▪ Lack of safety and convergence guarantees
▪ Hard to assign meaningful rewards

Pros
▪ General methods for complex tasks
▪ Adapt to changing environments
▪ Model free: no need to know dynamic model

Reinforcement learning projects in Sycamore lab

Bachelor projects
▪ Policy optimization for robotics

Semester and master projects
▪ Safe reinforcement learning
▪ Inverse reinforcement learning

References
▪ [1] Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).
▪ [2] Baker, Bowen, et al. "Emergent tool use from multi-agent autocurricula." arXiv preprint arXiv:1909.07528 (2019).
▪ [3] DeepMind AI Reduces Google Data Centre Cooling Bill by 40%. https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-

bill-by-40. Accessed 15 Dec. 2022.
▪ [4] Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489
▪ [5] Silver, David, et al. "Mastering chess and shogi by self-play with a general reinforcement learning algorithm." arXiv preprint arXiv:1712.01815 (2017).
▪ [6] Berner, Christopher, et al. "Dota 2 with large scale deep reinforcement learning." arXiv preprint arXiv:1912.06680 (2019).
▪ [7] Arulkumaran, Kai, Antoine Cully, and Julian Togelius. "Alphastar: An evolutionary computation perspective." Proceedings of the genetic and

evolutionary computation conference companion. 2019.
▪ [8] Akkaya, Ilge, et al. "Solving rubik's cube with a robot hand." arXiv preprint arXiv:1910.07113 (2019).
▪ [9] Fawzi, Alhussein, et al. "Discovering faster matrix multiplication algorithms with reinforcement learning." Nature 610.7930 (2022): 47-53.
▪ [10] “ChatGPT: Optimizing Language Models for Dialogue.” OpenAI, 30 Nov. 2022, https://openai.com/blog/chatgpt/.
▪ [11] Miki, Takahiro, et al. "Learning robust perceptive locomotion for quadrupedal robots in the wild." Science Robotics 7.62 (2022): eabk2822.
▪ [12] Ibrahim, Muhammad Sohail, Wei Dong, and Qiang Yang. "Machine learning driven smart electric power systems: Current trends and new

perspectives." Applied Energy 272 (2020): 115237.
▪ [13] Niao He, Lecture notes on “Introduction to Reinforcement Learning”, ETH Zurich, 2021, https://odi.inf.ethz.ch/files/zinal/Lecture-1-RL-

introduction.pdf
▪ [14] Open AI, “Taxonomy of RL Algorithms”, https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
▪ [15] Agarwal, Alekh, et al. "Optimality and approximation with policy gradient methods in markov decision processes." Conference on Learning Theory.

PMLR, 2020.
▪ [16] Mei, Jincheng, et al. "On the global convergence rates of softmax policy gradient methods." International Conference on Machine Learning. PMLR,

2020.

https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40
https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40
https://openai.com/blog/chatgpt/
https://odi.inf.ethz.ch/files/zinal/Lecture-1-RL-introduction.pdf
https://odi.inf.ethz.ch/files/zinal/Lecture-1-RL-introduction.pdf
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below

